
Eur. Phys. J. B 9, 479–490 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Received 13 January 1997

Abstract. A generalised integer S Ising spin glass model is analysed using the replica formalism. The
bilinear couplings are assumed to have a Gaussian distribution with ferromagnetic mean 〈Jij〉 = J0. Incor-
poration of a quadrupolar interaction term and a chemical potential leads to a richer phase diagram with
transitions of first and second order. The first order transition may be interpreted as a phase separation,
and contrary to what has been argued previously, it persists in the presence of disorder. Finally, the sta-
bility of the replica symmetric solution with respect to fluctuations in replica space is analysed, and the
transition lines are obtained both analytically and numerically.

PACS. 75.10.Nr Spin-glass and other random models – 64.60.Cn Order-disorder and statistical mechanics
of model systems – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)

1 Introduction

The much studied SK model of spin glasses may be gen-
eralised in different ways. The standard spin glass model,
given by

H = −
∑
〈ij〉

Jijsisj with si = ±1, (1)

may be extended for instance by allowing values s =
0,±1,±2, . . . ,±S for the spin variables. It is then possible
to consider higher order interactions such as K

∑
ij s

2
i s

2
j ,

or a chemical potential such as ∆
∑
i s

2
i . Such gener-

alisations can be regarded as extensions of the Blume-
Emery-Griffiths model (BEG) [4]. Indeed the BEG model
allows s = 0,±1 and takes into account the aforemen-
tioned higher order interaction and chemical potential.
However, in the standard formulation, the bilinear cou-
plings are neither frustrated nor disordered: they are fer-
romagnetic. The s = 0 degree of freedom has been used
to model a diluted lattice gas and leads to a first order
transition separating magnetic and non-magnetic phases.
Thus our generalisation of the BEG Hamiltonian is a good
way to study the influence of disorder and frustration on
first order transitions.

The BEG model has been studied in various contexts
and a mean field approximation has been given by Blume,
Emery and Griffiths [4]. They introduced the model in
order to study multicritical phenomena associated with
physical systems such as binary mixtures. For an overview,
see the review article of Lawrie and Sarbach [18]. To im-
prove the mean field results and to cope with the finite
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dimensionality of real physical systems, several different
techniques have been applied to the BEG model, e.g.,
Tucker [24] applied the exponential operator technique of
Honmura and Kaneyoshi [16] to the isotropic BEG, and
Fittipaldi et al. [12] applied it to the anisotropic BEG
model. In addition the model has been treated in the clus-
ter approximation by Tucker [25] and in the local mean
field approximation by Maritan et al. [5].

Several disordered BEG models have been studied.
Berker et al. [11] looked at a bond disordered BEG
model and Ez-Zahraouy [10] looked at a bond diluted
BEG model. To our knowledge no studies of the case
of quenched disorder with frustration have been carried
out for the BEG model, though Arenzon et al. [1] have
considered a frustrated lattice gas model similar to the
BEG model. The closest model to a generalised BEG stud-
ied in the literature was first analysed by Ghatak and
Sherrington [13]. In their model, they considered s =
0,±1, and the influence of a chemical potential, but they
had no quadrupolar interaction and the ferromagnetic
mean J0 of their bilinear coupling Jij was assumed to van-
ish. The interesting point we wish to stress here is that the
first order transition of the BEG model, which can be in-
terpreted as a phase separation transition, persists in the
GS generalisation. This is in contrast to the findings of
Berker et al. which will be discussed below.

In the present paper we generalise the standard SK
spin glass Hamiltonian to incorporate the chemical po-
tential, the quadrupolar interaction, randomly distributed
bilinear couplings with a non-zero ferromagnetic mean,
and other integer values for the spin variables. We restrict
our study to the s = 0,±1 case, which should cover in
a qualitative way the general integer S-spin models [17].
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Furthermore we do not study the effect of disorder in the
quadrupolar couplings; such effects have been considered
in other models by Snowman et al. [20]. The paper is or-
ganised as follows. In Section 2 we introduce the model. In
Section 3 the free energy is derived in the replica symmet-
ric approximation and in Section 4 we give the model’s
phase diagram. In Section 5 we discuss our results in the
light of recent arguments of Berker et al. concerning the
influence of quenched disorder on phase transitions of first
order. In Section 6 we analyse the stability of the replica
symmetric solution and derive the lines of instability. Con-
clusions are drawn in the final section.

2 The model

We consider the model described by the BEG-SK Hamil-
tonian, where the spin variables are allowed to assume the
values si = 0,±1

H = −
1

2

∑
〈ij〉

Jijsisj +∆
∑
i

s2
i −

1

2
K
∑
〈ij〉

s2
i s

2
j − h

∑
i

si.

(2)

This model will be treated in the mean field approxi-
mation, i.e., in the infinite range limit. For the sake of
simplicity we assume, as in the SK model, bilinear cou-
plings with a Gaussian distribution about a non-zero mean
〈Jij〉 = J0 > 0 allowing for ferromagnetic ordering. To
avoid additional complexity of the model we consider only
the case of positive quadrupolar coupling, K > 0, and
a ferromagnetic mean J0 of the bilinear couplings. The
chemical potential ∆ is allowed to assume positive as well
as negative values.

The couplings must be rescaled for the present case of
infinite ranged couplings in order to give a sensible free
energy in the thermodynamic limit: J → J/

√
N , J0 →

J0/N and K → K/N , respectively.

p(Jij) =

√
N

2πJ2
e
N

2J2 (Jij−J0/N)2

.

We consider now some special cases, which have already
been treated in the literature. When J = 0 and J0 > 0,
we recover the non-frustrated and non-disordered stan-
dard BEG model, which describes a binary mixture (e.g.,
He3 and He4). When J0 = 0 and K = 0, we recover the
Gathak and Sherrington model. In order to cope with the
problem of averaging over quenched disorder, it is neces-
sary to average the free energy over the bond distribution
Jij : f = F {Jij} /NJij

. We accomplish this by using the

replica technique of Edwards and Anderson [9]. This tech-
nique relies on the identity ln[Z] = limn→0

1
n

(Zn− 1); Zn

is interpreted as the partition function of a n-fold repli-
cated system si → sαi , α = 1, . . . , n. The average free
energy may be computed using the prescription:

βf = − lim
n→0

1

n
(Zn − 1).

We follow this standard procedure to average the loga-
rithm of the partition function. The average of the n-fold
replicated partition function over the disorder gives

Zn = tr{sαi }=0,±1,...,±S exp

β2J2

4N

∑
α6=β

∑
ij

sαi s
β
i s
α
j s
β
j

+(
β2J2

4N
+
βK

2N
)
∑
α

∑
ij

(sαi )2(sαj )2 +
βJ0

2N

∑
α

∑
ij

sαi s
α
j

−β∆
∑
α

∑
i

(sαi )2 + βh
∑
α

∑
i

sαi

}
. (3)

The Hubbard-Stratonowich transformation e
1
2λ(
∑
α s

α)2

=∫
Dt et

√
λ
∑
α s

α

with the convention Dt = e−
1
2
t2

√
2π

dt gives

for the free energy, within the framework of the replica
method at the saddle point,

βfn =
1

2
βJ0

∑
α

m2
α +

1

4
β2J2

∑
α

z2
α

+
1

2
βK

∑
α

z2
α +

1

4
β2J2

∑
α6=β

q2
αβ − ln [Zeff ] , (4)

where the effective Hamiltonian and its partition function
is given by

Heff =
∑
α

[−β∆+ βKzα +
1

2
β2J2zα]s2

α

+
∑
α

[βJ0mα + βh]sα +
1

2
β2J2

∑
α6=β

qαβsαsβ

Zeff = trsα=0,±1,... ,±S exp {Heff [sα]} .

The quantities introduced by these transformations ac-
quire the meaning of order parameters:

mα = 〈sα〉

1− xα = zα = 〈s2
α〉 (5)

qαβ = 〈sαsβ〉,

where the average is with respect to the effective Hamil-
tonian. These results are in fact valid for general integer
spin values, but in what follows we restrict ourselves to
the case of S = 1. In order to solve this model it is neces-
sary to make assumptions on the order parameter matrix
qαβ and to propose an ansatz.

3 Free energy of the model in RS

We limit ourselves to the simplest ansatz for the order pa-
rameter matrix, i.e., we assume symmetry with respect to
permutations of any pair of the replicas: qαβ = q, ∀α 6= β.
The single indexed quantities are assumed to be inde-
pendent of the replica index: mα = m and zα = z, ∀α.
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This leads to:

βf =
1

2
βJ0m

2 +
1

2
βKz2 +

1

4
β2J2z2 −

1

4
β2J2q2

−

∫
Dy ln [1 + 2 cosh [βJ0m+ βh+ βJ

√
qy]

×eβKz−β∆+ 1
2β

2J2z− 1
2β

2J2q
]
. (6)

This equation reduces to the one analysed by Ghatak
and Sherrington [13], Lage and de Almeida [17] and by
Mottishaw and Sherrington [19] if J0 = 0 and if there is
no quadrupolar coupling. In order to simplify the notation
hereafter, we define

φk(y) =
1

Zeff(y)
trs=0,±1,... ,±S,y[s

ke−βHeff(y)]. (7)

The effective Hamiltonian and its partition function
are the replica symmetric equivalents of those defined ear-
lier and obtained by one further Hubbard-Stratonowich
transformation. The set of functions φk(y) reduces for the
S = 1 model to just two functions:

φ0(y) =
2 cosh[β(J0m+ yJ

√
q + h)]

eβ∆+ 1
2β

2J2q−βκz + 2 cosh[β(J0m+ yJ
√
q + h)]

for k even,

φ1(y) =
2 sinh[β(J0m+ yJ

√
q + h)]

eβ∆+ 1
2β

2J2q−βκz + 2 cosh[β(J0m+ yJ
√
q + h)]

for k odd.

Introducing an effective temperature-dependent
quadrupolar coupling κ = K + 1

2βJ
2, the mean field

saddle point equations in the replica symmetric approxi-
mation are:

∂f

∂m
= J0m− J0

∫
Dy φ1(y) = 0,

∂f

∂z
= κz − κ

∫
Dy φ0(y) = 0, (8)

∂f

∂q
= −

1

2
βJ2q +

1

2
βJ2

∫
Dy [φ1(y)]

2
= 0.

4 Phase diagram

Mean field phase diagrams are obtained by extremising
the free energy with respect to the order parameters. They
have been determined for the BEG-SK model by extrem-
ising numerically the free energy (6) with respect to the
order parameters z, m and q for any temperature T and
chemical potential∆. Following a line of constant chemical
potential while varying the temperature — as is shown in
Figure 5 for two different but fixed values of the chemical
potential — will occasionally reveal the onset of ordering.
The examples include the appearance of non-vanishing
values of the order parameters m or q and discontinuous

x
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phase
separation

Fig. 1. The phase diagram of the (non-disordered) BEG model
in the concentration/temperature-plane, i.e., x−T -plane, for
the bilinear coupling J0 = 1.0 and for weak quadrupolar cou-
pling K = 0.16. The thin line represents a transition of second
order, whereas the diamonds indicate a transition of first or-
der. FM/SG stands for ferromagnetic/spin glass phase, PM is
the paramagnetic phase; the point A indicates the tricritical
point.

changes of the order parameter z which indicate a phase
separation. We infer the transition lines by monitoring the
magnetisationm, the spin glass order parameter q, and the
concentration z for fixed chemical potential ∆ and vary-
ing the temperature T . This was performed for a range of
different chemical potentials, sufficiently large to exhibit
the different phenomena.

To present the numerical results we will make use
of two commonly used phase diagram sections, the sec-
tion of chemical potential versus temperature (∆-T ) and
the section of concentration versus temperature (x-T ).
For the sake of completeness we first give the results for
the non-disordered BEG model. Since in the BEG model
there are two order parameters, the complete phase di-
agram is 3-dimensional, but we restrict ourselves to the
2-dimensional sections just mentioned. In Figure 1 we
show the concentration/temperature (x-T ) section and in
Figure 2 the chemical potential/temperature (∆-T ) sec-
tion of the phase diagram. Both diagrams are obtained
for a small value of the quadrupolar coupling constant
K = 0.16.

Next, we consider a special limit of the BEG-SK
model to make contact to the work of Sherrington and
Kirkpatrick. We allow the concentration to vary freely and
we take the limit ∆ → −∞. From this, we recover the
Sherrington and Kirkpatrick Hamiltonian [23]: all spins
tend to be |s| = 1, i.e., x → 0. The phase diagram ob-
tained by Sherrington and Kirkpatrick represents a section
of the general phase diagram, i.e., the x-J0-T section for a
concentration value x = 0. This diagram exhibits a para-
magnetic phase at high temperatures and small ferromag-
netic coupling, whereas it exhibits a ferromagnetic phase
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Fig. 2. The phase diagram of the (non-disordered) BEG model
in the chemical potential/temperature-plane, i.e., ∆−T -plane,
for the bilinear coupling J0 = 1.0 and for weak quadrupolar
coupling K = 0.16. The thin line represents a transition of
second order, whereas the diamonds indicate a transition of
first order.
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Fig. 3. The phase diagram of the SK model in the ferromag-
netic coupling/temperature-plane, i.e., J0/J − T -plane. The
lines shown are transitions of second order.

for larger ferromagnetic coupling and moderate temper-
atures. Finally at very low temperatures the spin glass
phase appears. This behaviour is shown in Figure 3. The
figure does not take into account the correction to the
transition line between ferromagnetic and spin glass phase
due to stability requirements [7].

The section of the general phase diagram obtained by
Ghatak and Sherrington [13] is the ∆−T -section for J0 =
0, cf. [22]. The transition lines are obtained analytically
following the procedure of Lage and de Almeida [17] by
examining the stability of the replica symmetric solution;

∆
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1

-0.5 0 0.5 1 1.5 2

T
A
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FM/SG

Fig. 4. The phase boundary of the GS-model (K = 0.0 and
J0 = 0.0) in the chemical potential/temperature-plane, i.e.,
∆−T -plane.

T

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

FM/SG

separation

PM

phase

Fig. 5. The phase diagram of the disordered BEG-SK model
in the x−T -plane for the bilinear couplings J0 = 2.0, J = 1.0
and for weak quadrupolar coupling, K = 0.16. The thin line
and the dense lying diamond symbols represent the transition
of second order, whereas the sparse lying diamonds indicate the
first order transition. The two dotted lines are the free energy
minima for two different chemical potentials (∆ = 0.6 and
0.65) and varying the temperature (from T = 0.0 to T = 1.2).

they are given by

∆ =



J

2
+ T ln

[
2

(
J

T
− 1

)]
: T >

1

3

J2

4T

(
1±

√
1−

8T 2

J2

)

+T ln

2

 1

1

2
(1±

√
1−

8T 2

J2
)

− 1


 : T ≤

1

3

.

(9)
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Fig. 6. The phase diagram of the disordered BEG-SK model
in the ∆-T -section for the bilinear couplings J0 = 2.0, J = 1.0
and for weak quadrupolar couplingK = 0.16. The thin line and
the dense lying diamond symbols represent the second order
transition, whereas the sparse diamonds indicate the transition
of first order.
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Fig. 7. The complete phase diagram of the disordered
BEG-SK model, with the lines of stability and the line
of tricritical temperature in the concentration/ferromagnetic
coupling/temperature-representation, i.e., x−J0/J−T -plane,
for weak quadrupolar coupling K = 0.16.

These transition lines are shown in Figure 4. The lower
two lines belong respectively to the two choices of sign in
the second equation.

Finally we are ready to present the complete phase dia-
gram for BEG-SK model. Figure 5 shows the x-T section
and Figure 6 the ∆-T section of the phase diagram for
one choice of the coupling parameters: J0 = 2.0, J = 1.0
and K = 0.16. In order to relate this to previous work
and to present the complete phase diagram, the x-T and
the ∆-T sections have been calculated for different val-
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Fig. 8. The complete phase diagram of the disordered BEG-
SK model, with the lines of stability and the line of tricriti-
cal chemical potential in the chemical potential/ferromagnetic
coupling/temperature-representation, i.e., ∆−J0/J−T -plane,
for weak quadrupolar coupling K = 0.16.

ues of the ferromagnetic coupling (scaled by the variance
of the distribution of the couplings) and the results are
shown in Figures 7 and 8, respectively. Figure 7 shows
in the x-J0/J-T plane our numerical results (represented
by diamonds) and the results of the SK model (repre-
sented by crosses) at a value x = 0 of the concentration.
The line of tricritical temperatures which will be given
in formula (23) is shown with a broken line and the sur-
face gives the second order phase transition. In Figure 8
the ∆-J0/J-T section is given and the square symbols in-
dicate the numerical results, which cover the first as well
as the second order phase transition. The results from
Ghatak and Sherrington [13] are reproduced for the value
of the ferromagnetic coupling J0 = 0, i.e., the face of the
cube. For details on the stability we refer the reader to
Section 6 and to Figure 11. The first order transitions ter-
minate at the line of tricritical potential given by formula
(24), which is the thick line from the bottom left to the
top right. The crosses represent the first order transition
lines. The second order transition above Ttri, given by for-
mula (21) and obtained by the stability analysis presented
in Section 6 are represented by squares. The stability lines
below Ttri are not given.

We now discuss the numerical results in the light of
recent work on disordered BEG-type models which are
not frustrated. After we will address the problem of the
stability of the replica symmetric solution.

5 Behavior of the first order transition

Let’s look at the influence of disorder on the first or-
der transition, which can — following Blume, Emery and
Griffiths — be interpreted as a phase separation. This
first order transition represents an example of a transition
which breaks a global symmetry. The Hamiltonian is in-
variant under inversion of all spins; in the ordered phase
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Fig. 9. The phase diagram of the non-disordered BEG model
in the x − T -plane for the bilinear coupling J = 1.0 and for
a rather strong quadrupolar coupling, K = 2.88. The point A
indicates the tricritical point, the point B represents the triple
point and point C is the critical end point.
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Fig. 10. The phase diagram of the non-disordered BEG model
in the ∆−T -section for the bilinear coupling J = 1.0 and for a
rather strong quadrupolar coupling K = 2.88.

this symmetry is spontaneously broken, whereas in the
paramagnetic phase the symmetry is preserved.

We first consider the non-disordered BEG model in the
x− T representation, where the appearance of the phase
separation is most visible. In Figure 1 the phase diagram
is shown for a weak quadrupolar interaction. In Figure 9
the same is seen for a rather strong quadrupolar coupling
K = 2.88. The point is that the quadrupolar coupling
enhances the phase separation. In the limit of K � 1,
the model tends to behave as the Griffiths model [14].
We thus wish to emphasise the importance of the pres-
ence of a quadrupolar interaction. In the original model
of Blume, Emery, and Griffiths, even the K = 0 case ex-
hibits a phase separation. It is due to the bulk interaction
of the s = 0 species (He3) and the s = ±1 species (He4),
the latter allowing an additional degree of freedom (fer-
romagnetic phase). At low temperature the ferromagnetic
phase is the favoured phase for the s = ±1 species and

T

∆

PM-M PM-U
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0 0.2 0.4 0.6 0.8 1
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ρ λ

µ

λ

Fig. 11. The phase diagram of the disordered BEG-
SK model, with the lines of stability in the chemical
potential/temperature-representation, i.e., ∆−T -plane, for
weak quadrupolar coupling, K = 0.16, and for the ferromag-
netic coupling J0/J = 2.0. The symbols have the following
meanings: PM-M is the paramagnetic phase with many free en-
ergy minima, PM-U is the paramagnetic phase with an unique
free energy minimum, FM/SG the ferromagnetic or eventually
spin glass phase, µ gives the positive sign branch and % the
negative sign branch of equation (22); λ is the second order
transition line.

phase separation occurs in order to permit ordering in a
He4 rich phase. Letting K 6= 0 allows for an inter-isotopic
interaction; in fact K represents a combination of inter-
isotopic interactions, K = K33 + K44 − 2K34, which are
assumed to be positive. It is remarkable that for a range of
values of K the phase diagram exhibits a triple point to-
gether with the critical and tricritical point. This appears
in the original BEG model and in the present model, as
can be seen from Figure 10. The tricritical point is given
in the diagrams by A, the triple point by B, and the crit-
ical point by C; these special points are also marked in
Figure 9.

Introducing disorder in the BEG model may affect the
phase separation. Figure 5 shows the phase diagram ob-
tained by a numerical extremisation of the free energy.
The phase separation persists independently of the pres-
ence of disorder. The average over the Gaussian disorder
has introduced an effective quadrupolar coupling κ, which
— as we have seen before in the non-disordered case —
enhances the phase separation. Furthermore this effective
interaction is also temperature dependent:

κ = K +
1

2
βJ2. (10)

This promotes the phase separation at low temper-
atures as can be seen by comparing with Figure 9 (for
the low temperature regime) and Figure 1 (for the high
temperature regime) in the non-disordered case. Even
if there is an effect due to the presence of disorder,
which might suppress or change the first order transition,
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this effect is apparently compensated by the additional
term contributing to the effective quadrupolar coupling.

This result complements those of Berker et al. [2,3,11].
They conjecture, in dimension d ≥ 3, that the disorder
lowers the tricritical temperature; then that part of the
transition line enclosed between the former and the actual
tricritical temperature should become second order. Also,
they claim that all of the first order line is replaced by a
second order one if the disorder is sufficiently strong. A
few comments are in order:

(i) The analysis of Berker et al. relies on the real space
renormalisation group approach for an initially pos-
itive distribution of the couplings. This distribution
remains positive and consequently cannot take into
account the effect of frustration. Nevertheless, we do
not think that the frustration is responsible for the
persistence of the phase separation for the following
reason: even when J is small, so that there is disor-
der but essentially no frustration, the phase separa-
tion persists (see the phase diagrams). Monte Carlo
studies by Diep et al. [8] indicate this persistence and
hence ensure that the phase separation is not an arte-
fact of the mean field approach.

(ii) The mean field approximation is equivalent to a
model in infinite dimensions, perhaps rendering the
comparison of our results with the predictions of
Berker et al. invalid. Nevertheless, it should give an
indication of whether the first order transition per-
sists or not. Furthermore one could argue that in
infinite dimensions, an infinitely strong disorder is
required to suppress the first order transition. How-
ever Figure 4 indicates that this model reduces to
that discussed by Ghatak and Sherrington [13] with a
vanishing ferromagnetic coupling, showing again the
persistence of the first order transition.

(iii) The assumption of replica symmetry is not justified.
However, based on the stability analysis, we have
found that the first order transition persists; it seems
rather improbable that it be suppressed by doing the
full replica symmetry breaking scheme.

To summarise, Berker et al. claim that their results
are generic, but our mean field treatment shows that the
phase separation is not affected by the introduction of
disorder. In particular, the tricritical temperature is not
modified: T/J = 1/3, if J > J0, using the same scaling
as Berker et al. Note that their analysis does not reveal
the effective quadrupolar interaction, which plays a subtle
role. On the one hand, following Berker et al. and their
general arguments [2,3], the disorder should change the
first order transition to a second order one; on the other
hand, the effective quadrupolar interaction enhances the
phase separation, so stabilises the first order transition. As
we have seen above, the effective quadrupolar interaction
more than compensates the first effect so that the first
order transition persists. Furthermore, since for a small
amount of disorder the frustration effects are negligible,
the models considered are comparable and our results pro-
vide a counterexample to their claim.

6 Transition lines from a stability analysis

The assumption of replica symmetry allows for a simple
answer for the BEG-SK model. However, as for the SK
model, it leads to an unstable solution and the breaking
of the permutation symmetry of the replicas is required.
We expect the Parisi breaking scheme to apply here and to
remove the instabilities in our model. Since under replica
symmetry breaking the findings of the analysis assuming
replica symmetry are in general confirmed, i.e., a spin
glass phase persists, we won’t study finite nor infinite step
step replica symmetry breaking. In this section we restrict
ourselves to the replica symmetric solution and we derive
the lines of instability to locate the phase transitions lines
given in Section 4 — even though the location of these
lines may differ in a more advanced treatment. The sta-
bility of the replica symmetric solution of the SK model in
its integer spin generalisation was examined by Lage and
de Almeida [17] and in greater detail by Mottishaw and
Sherrington [19]. These works limit their analysis to the
disordered integer S spin glass model without a non-zero
ferromagnetic mean and without quadrupolar coupling.

The present stability analysis follows closely the meth-
ods of de Almeida and Thouless [7] and subsequent works.
To examine the stability of the solution it has to be made
sure that the solution extremises the free energy. The
quadratic form Γ describing the deviation of the solution
from its stationary value should be positive definite.

βf = βf(m, z, q)−
1

2
Γ +O(δ3) and

Γ =
∑
αβ

Gεεαβεαεβ +
∑
αβ

Gρραβραρβ

+
∑

(αβ)(γδ)

Gηη(αβ)(γδ)ηαβηγδ (11)

+2
∑
αβ

Gεραβεαρβ + 2
∑

(αβ)γ

Gηε(αβ)γηαβεγ

+2
∑

(αβ)γ

Gηρ(αβ)γηαβργ .

The matrix G associated with this form is the Hessian H.
The eigenvalues of the Hessian should be non-negative to
make sure that the solution is stable. Due to the same sym-
metry arguments used by de Almeida and Thouless [7], we
discover three families of eigenvalues which by convention
are called: longitudinal, longitudinal anomalous and repli-
con. But in the present case the stability analysis requires
the diagonalisation of a Hessian H which is built out of
three blocks. As a consequence there are now three distinct
eigenvalues in each family. The longitudinal eigenvectors
are the fully symmetric ones with respect to permutations
of the replica indices and are of the form:

eL
µ = a for µ = 1 . . . n, eL

ν = b for ν = 1 . . . n,

eL
αβ = c for α, β = 1 . . .

n

2
(n− 1). (12)

They give rise to eigenvalues which are the solution
to the cubic characteristic equation. The full formula
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for the eigenvalues is too cumbersome to be displayed
here, they will be discussed in the paramagnetic phase
below (the full expressions are given in Appendix A). The
longitudinal anomalous eigenvectors are generated by one
distinct replica index θ and look like:

eLA
µ = a for µ = 1 . . . n and µ 6= θ, eLA

µ = g for µ = θ,

eLA
ν = b for ν = 1 . . . n and µ 6= θ, eLA

ν = c for ν = θ,

eLA
αβ = d for α, β = 1 . . .

n

2
(n− 1)

and α, β 6= θ, eLA
αβ = e for α, β = θ. (13)

Again the eigenvalues are given in appendix A. The repli-
con eigenvectors are generated by two distinct replica in-
dices ω and θ and they are of the following form:

eR
µ = a for µ = 1 . . . n and µ 6= θ, ω,

eR
µ = g for µ = θ, ω,

eR
ν = b for ν = 1 . . . n and µ 6= θ, ω,

eR
ν = c for ν = θ, ω,

eR
αβ = d for α, β = 1 . . .

n

2
(n− 1)

and α, β 6= θ and α, β 6= ω,

eR
αβ = e for α, β = θ or α, β = ω,

eR
αβ = f for (αβ) = (θω). (14)

The eigenvalue is given by the solution of the characteristic
equation, but as this equation is explicit, so the eigenvalue
is obtained immediately:

λR = P − 2Q+R, (15)

where P,Q and R are appropriate correlation functions
given in the appendix. Adding the number of eigenval-
ues obtained in the three symmetry families gives the
expected number 3 + (3n − 3) + n

2 (n − 3) = n
2 (n + 3),

i.e., the dimension of H. The so called longitudinal eigen-
values λL and λLA coincide in the n → 0-limit as in
the work of de Almeida and Thouless [7] and Lage and
de Almeida [17]. The replica symmetric fluctuations of the
one-indexed quantities (zα and mα) and the two-indexed
quantity qαβ are described respectively by the longitudi-
nal eigenvalues, λLA and λL. The third eigenvalue λR is
distinct from the other two eigenvalues and is related to
the fluctuations which break the replica symmetry of the
two indexed quantity qαβ . In order to investigate the sta-
bility of the replica symmetric solution, for example in the
ferromagnetic phase, the eigenvalues λL, λLA and λR have
to be calculated in this phase. In the appendix the general
expressions for the different eigenvalues and the correla-
tion functions appearing therein are given. They must be
evaluated under the appropriate approximation, i.e., in
the present case, under the replica symmetric approxima-
tion. In order for a phase to be stable the eigenvalues in
this phase have to be non-negative. We now investigate
the stability of the paramagnetic phase.

The paramagnetic phase

Consider the paramagnetic phase defined by the vanish-
ing of all magnetic order parameters: q = 0,m = 0. This
considerably simplifies the expressions for the eigenvalues.
All off-diagonal elements of the Hessian or combinations
appearing in the characteristic equations vanish. In order
to simplify the notation further, we consider directly the
combinations appearing in the definitions of the different
eigenvalues. The longitudinal eigenvalues are given by the
solution of:

λ3
L + aλ2

L + bλL + c = (λ− λ1)(λ− λ2)(λ− λ3) = 0.
(16)

The coefficients for a cubic equation are given implicitly
by the solutions to that equation:

−a = [U − V ] + [A−B] + [P − 4Q+ 3R]=λ1 + λ2 + λ3

b = [U − V ][P − 4Q+ 3R] + [A−B][P − 4Q+ 3R]

+[U − V ][A−B] = λ1λ2 + λ2λ3 + λ1λ3 (17)

c = −[U − V ][A−B][P − 4Q+ 3R] = −λ1λ2λ3,

which may be solved immediately to give

λL
1 = [A−B]

λL
2 = [U − V ] (18)

λL
3 = [P − 4Q+ 3R] = P.

The longitudinal anomalous eigenvalues are given by
the same expressions. The replicon eigenvalue is given by:

λR = P − 2Q+R = P, (19)

and coincides in the paramagnetic phase with the third
longitudinal eigenvalue. In order for the paramagnetic
phase to be stable, the eigenvalues in this phase must
be non-negative. The border line of stability is given by
λL,LA,R = 0, which defines seven lines; but due to the
collapsing eigenvalues of different families there are only
three different stability lines. In the replica symmetric ap-
proximation, these read:

A−B = βJ0[1− βJ0z] = 0

U − V = βκ[1− βκ(z − z2)] = 0 (20)

P − 4Q+ 3R = P − 2Q+R

= β2J2[1− β2J2z2] = 0.

The stability limits are given by the following explicit
formulae, first in the plane of concentration x versus tem-
perature T :

T (x)

J0
= 1− x

T (x)

J
= 1− x (21)

1

βK + 1
2β

2J2
= x(1− x).
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The paramagnetic phase becomes unstable whenever
the temperature is lowered below the greater of the two
bilinear couplings J and J0. This behaviour is identical to
that observed by Sherrington and Kirkpatrick. The condi-
tions of stability can be rewritten in terms of the chemical
potential ∆ and temperature T . The stability lines are ob-
tained by using the fixed point equation (8) determinating
the concentration, and represent a line in the ∆-T -section
of the phase diagram.

∆RS(T ) =



(K + 1
2
βJ2)T

J
+ T ln

[
2
(
J
T
− 1
)]

: T > Ttri

(K + 1
2
βJ2) 1

2

(
1±

√
1− 8

2βK+β2J2

)
+T ln

2

 1

1
2

(1±
√

1− 8
2βK+β2J2 )

− 1

 : T ≤ Ttri

.

(22)

For one choice of the parameter the complete set of sta-
bility lines has been depicted in Figure 11. Furthermore
the numerical results covering the first order transition
points as well as those of second order are represented
by diamond symbols. The following discussion refers to
this figure. The two choices of sign in the second equation
separate different regions of the free energy’s behaviour.
The branch (µ) belonging to the positive sign separates
the region of free energy with a unique minimum (PM-U)
from the region where there is more than one local minima
(PM-M). It is in this latter region where first order transi-
tions occur and the phase separation appears. The branch
(%) belonging to the negative sign represents regions where
the free energy has three local minima, separating the re-
gion where the minimal solution is the one with vanishing
order parameter from the region where the minimal so-
lution is the one with a nonvanishing order parameter;
this line (%) is indicating the onset of phase separation.
The concentration x jumps when crossing this line; in fact
this line represents in the ∆-T section of the phase di-
agram the whole phase separation or coexistence region.
As can be seen by comparison with the numerical data,
the location of the first order phase transition is predicted
correctly only near the tricritical point. It is known that
the stability analysis is not an adequate mean to deter-
mine first order phase transitions. As in previous works
the λ-line (λ) meets the first order transition line at a tri-
critical point: a second order line changes to a first order
line, or, following Griffiths [15], three critical lines meet
(see also [18]). For completeness the continuation of the
λ-line below Ttri has been drawn too.

Tricriticality

The occurrence of a tricritical point in a system with one
order parameter is signaled by the vanishing of the fourth
derivative of the free energy with respect to the order pa-
rameter. In the present problem there are three order pa-
rameters and they all have replica indices. The criterion
must be modified: the eigenvalues of the matrix of the
fourth derivatives have to vanish. But due to the diagonal

structure of the HessianH in the paramagnetic phase this
amounts to computing the fourth derivative with respect
to the magnetisation and to search for its zero. This is
in fact the classical argument of the Landau theory. The
tricritical temperature in the non-disordered case is given
for a vanishing quadrupolar coupling by

Ttri =
1

3
max {J0, J} .

For a non-vanishing quadrupolar coupling the tricritical
temperature is given by:

Ttri =
2K + 1

2K + 3
max {J0, J} .

The tricritical point present in the non-disordered model
(BEG) persists and in terms of the temperature and con-
centration is given in the crudest approximation by:

xtri =
2

3
and Ttri =

2K + 1

2K + 3
max {J0, J} . (23)

The numerical data show that this is a good approxi-
mation. It is worth mentioning that the tricritical concen-
tration has kept its value from the non-disordered BEG
model. In contrast the tricritical chemical potential has
been modified. Resolving the tricritical condition provides
a formula in ∆-J0/J-T space for the tricritical line. In the
∆-T plane, it is given by:

∆tri(J0, J) =



K

3
+

1

2

J2

J0
+

2

3
J0 ln[2]

and Ttri =
J0

3
for J0 > J

K

3
+

1

2
J +

2

3
J ln[2]

and Ttri =
J

3
for J > J0

. (24)

This line, as a function of J0, is constant up to J0 = J ,
and then tends for stronger ferromagnetic coupling to
larger chemical potential. The line of stability for the sec-
ond order transition and the aforementioned line of tri-
critical ∆ are displayed together with the numerical data
in Figure 8. The value for the quadrupolar coupling for
this figure is K = 0.16.

7 Discussion and conclusions

We have performed a replica study of the disordered BEG
model and have extended previous work to present a pic-
ture of the complete phase diagram. The BEG-SK model
shows a second order transition, the so-called λ-line, sepa-
rating an ordered phase from a paramagnetic one. The or-
dered phase may be a ferromagnetic or a spin glass phase,
depending on the strength of the ferromagnetic coupling
J0. Furthermore, a transition of first order, present in the
non-disordered BEG model, persists, and may be inter-
preted as a phase separation. This extends recent work
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of Berker et al. on the influence of disorder on first or-
der transitions. Our mean field study is completed by
a stability analysis of the replica symmetric approxima-
tion. The complete set of eigenvectors and eigenvalues has
been found and analysed in the paramagnetic phase. The
replica symmetric solution suffers from instabilities, but
the assumption of replica symmetry and the associated
results do not exhibit more severe inconsistencies than in
the SK model. For the SK model, the instabilities of the
replica symmetric solution have been remedied by the infi-
nite step replica symmetry breaking procedure. We expect
the same approach to work in this case, but following Mot-
tishaw and Sherrington [19] near the tricritical point, the
Parisi Ansatz has to be extended to higher order in qαβ .
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part of this work was accomplished. The Division de Physique
Théorique is an Unité de Recherche des Universités Paris XI
et Paris VI, associée au C.N.R.S.

Appendix A: Eigenvectors and eigenvalues

We follow Lage and de Almeida [17] in their stability anal-
ysis of the replica symmetric solution. The Hessian of the
free energy is given schematically by:

H =
∂2f

∂[zαmαqαβ ]∂[zαmαqαβ ]

=



U(z, z) V
U

W X
W

Y Z
Y

A(m,m) B
A

C D
C

P (q, q) Q R
P Q
P


.

The second equality defines the quantities U, V, . . .
with respect to their position in the Hessian. These quan-
tities are the respective Gαβεε , etc . . . as given in the main
part. As will be seen later they can be expressed in terms
of the different multispin correlation functions up to de-
gree 4. The dimension of the Hessian is n+n+ n

2 (n−1) =
n
2 (n+ 3) and equals the number of eigenvalues and eigen-
vectors to be found. In order to diagonalise the Hessian
we construct the eigenvectors using the symmetry argu-
ments exposed by de Almeida and Thouless [7]. We do not
construct a orthonormal set of eigenvectors, because the
additional constraints destroy the symmetry with respect
to replica permutations. Rather we content ourselves with

three families of eigenvectors, each orthogonal to another,
but not orthogonal within the families.

We start with the eigenvector totally symmetric under
permutations of the replicas:

eL =

a : µ = 1 . . . n
b : ν = 1 . . . n
c : α, β = 1 . . . n2 (n− 1).

According to conventional notation this vector is referred
to as belonging to the longitudinal subspace; hence the
subscript L. This is a subspace of dimension d = 3, which
is easily verified by constructing a orthogonal set of eigen-
vectors conserving the form prescribed above. The eigen-
vector equation HeL = λLeL reads

a[U + (n− 1)V − λL] + b[W + (n− 1)X]

+ c[Y (n− 1) + Z[
n

2
(n− 1)− (n− 1)]] = 0

a[W + (n− 1)X] + b[A+ (n− 1)B − λL]

+ c[C(n− 1) +D[
n

2
(n− 1)− (n− 1)]] = 0

a[2Y + (n− 2)Z] + b[2C + (n− 2)D] + c[P + 2(n− 2)Q

+R[
n

2
(n− 1)− 2(n− 1)− 1]− λL] = 0.

The longitudinal eigenvector equation gives rise to a cubic
characteristic equation for the eigenvalue λL:

(λL)3 + a(λL)2 + bλL + c = 0.

We give its coefficients in the n = 0 limit:

a = −[U − V ]− [A−B]− [P − 4Q+ 3R]

= −λL
1 − λ

L
2 − λ

L
3

b = −[W −X]2 + [U − V ][P − 4Q+ 3R] + 2[Y − Z]2

+[A−B][P − 4Q+ 3R] + [U − V ][A−B] + 2[C −D]2

= λL
1λ

L
2 + λL

2λ
L
3 + λL

1λ
L
3

c = −[U − V ][A −B][P − 4Q+ 3R]− 2[U − V ][C −D]2

+[W −X]2[P − 4Q+ 3R] + 4[W −X][Y − Z][C −D]

−2[Y − Z]2[A−B] = −λL
1λ

L
2λ

L
3 .

Define the following quantities:

γ = −
a2

3
+ b

% = 2
(a

3

)3

−
1

3
ab+ c

Γ =
(γ

3

)3

+
(%

2

)2

σ+ =
(
−
%

2
+
√
Γ
) 1

3

σ− =
(
−
%

2
−
√
Γ
) 1

3

,
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where only the real cubic roots are used. This allows us
to write the three solutions as:

λL1 = σ+ + σ−

λL2 = −
1

2
(σ+ + σ−) +

i

2

√
3(σ+ − σ−) (A.1)

λL3 = −
1

2
(σ+ + σ−)−

i

2

√
3(σ+ − σ−).

The value of Γ tells us whether the solutions are degener-
ate or not.

Γ

< 0 : distinct real solutions
= 0 : degenerate real solutions
> 0 : complex solutions.

As has been recognized by Lage and de Almeida [17], oc-
casionally Γ is positive and so the eigenvalues become
complex. This has been verified numerically by da Costa
et al. [6].

The next eigenvectors, which will be called longitudi-
nal anomalous, are constructed by breaking the symmetry
of the longitudinal vector with respect to one replica, given
by the distinct index θ.

eLA =



a : µ = 1 . . . n, µ 6= θ
g : µ = θ
b : ν = 1 . . . n, µ 6= θ
c : ν = θ
d : α, β = 1 . . . n2 (n− 1), α, β 6= θ
e : α, β = θ.

Consider the orthogonality condition for the first eigen-
vector, if a = g or b = c. This condition results in trivial
eigenvectors. In order to obtain non-trivial eigenvectors,
the symmetry in both n-blocks has to be broken, giving
kn eigenvectors of the second family, where k is the num-
ber of different choices of the parameters conserving the
prescribed form. Orthogonality of the second family to the
first family of eigenvectors requires:

g = (1− n)a c = (1− n)b e = (1−
n

2
)d . (A.2)

Therefore k = 3 and this choice gives rise to 3n eigen-
vectors including the previous one. Writing down the
characteristic equation for the longitudinal anomalous
eigenvalues λLA gives:

a[U − V − λLA] + b[W −X] + d(
n

2
− 1)[Y − Z] = 0

a[W −X] + b[A−B − λLA] + d(
n

2
− 1)[C −D] = 0

2a[Y − Z] + 2b[C −D] + d(
n

2
− 1)[P + (n− 4)Q

+R(3− n)− λLA] = 0.

The longitudinal anomalous eigenvector equation also
gives rise to a cubic characteristic equation for the eigen-
value λL:

(λLA)3 + a(λLA)2 + bλLA + c = 0.

We quote its coefficients in the n = 0 limit:

a = −U + V −A+B − P + 4Q− 3R

b = (W −X)
2 − (U − V ) (P − 4Q+ 3R)

+ (2Y − 2Z) (−Y + Z)

− (A− B) (P − 4Q+ 3R)− (U − V ) (A−B)

+ (−C +D) (2C − 2D)

c = (U − V ) (A−B) (P − 4Q+ 3R)

− (U − V ) (−C +D) (2C − 2D)

− (W −X)
2

(P − 4Q+ 3R)

+ (W −X) (−Y + Z) (2C − 2D)

+ (2Y − 2Z) (W −X) (−C +D)

− (2Y − 2Z) (−Y + Z) (A−B) .

Again the solutions may be written as in equation
(A.1), but now with modified coefficients γ, %, . . . .

The eigenvalues will in general be different in each fam-
ily, but since the characteristic equations for the longitu-
dinal and the anomalous longitudinal become identical in
n = 0-limit, so do the eigenvalues, and then the longitudi-
nal and longitudinal anomalous families collapse. There
are 3n eigenvectors and the three eigenvalues are each
n-fold degenerate, including the three eigenvalues of the
first eigenvector.

Finally, there is the third family, called replicon. Break-
ing the symmetry with respect to permutations of pairs by
distinguishing two indices θ and ω, we obtain the following
form for the eigenvectors:

eR =



a : µ = 1 . . . n, µ 6= θ, ω
g : µ = θ, ω
b : ν = 1 . . . n, µ 6= θ, ω
c : ν = θ, ω
d : α, β = 1 . . . n2 (n− 1), α, β 6= θ and α, β 6= ω
e : α, β = θ or α, β = ω
f : (αβ) = (θω).

Orthogonality of the third family to the previous two
families of eigenvectors requires:

g = a c = b 0 = f + (n− 4)e+ (3− n)d. (A.3)

The choice of equal non-vanishing entries would give
the first family, so the recommended choice is

g = a = 0 c = b = 0 f = (2− n)e e =
1

2
(3− n)d.

(A.4)

The characteristic equation is the solution for the repli-
con eigenvalue itself:

λR = P − 2Q+R.

The replicon eigenvalue is independent of n and iden-
tical in form to the result obtained by de Almeida and
Thouless [7]. This eigenvalue is n

2 (n− 3)-fold degenerate.
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A.1 The replica symmetric ansatz

In order to analyse the stability of the replica symmetric
ansatz, the quantities defined in the Hessian are to be
evaluated assuming replica symmetry. This gives:

A = βJ0[1− βJ0(〈s2
α〉 − 〈sα〉

2)] = βJ0[1− βJ0(z −m2)]

B = β2J2
0 [〈sα〉

2 − 〈sαsβ〉] = β2J2
0 [m2 − q]

C = β2J2βJ0[〈sα〉〈sαsβ〉 − 〈sαs
2
β〉] = β2J2βJ0[mq − r]

D = β2J2βJ0[〈sγ〉〈sαsβ〉 − 〈sαsβsγ〉]

= β2J2βJ0[mq − u]

P = β2J2[1− β2J2(〈s2
αs

2
β〉 − 〈sαsβ〉

2)]

= β2J2[1− β2J2(s− q2)]

Q = β4J4[〈sαsβ〉
2 − 〈s2

αsβsγ〉] = β4J4[q2 − v]

R = β4J4[〈sαsβ〉
2 − 〈sαsβsγsδ〉] = β4J4[q2 − w]

U = βκ[1− βκ(〈s2
α〉 − 〈s

2
α〉

2)] = βκ[1− βκ(z − z2)]

V = β2κ2[〈s2
α〉

2 − 〈s2
αs

2
β〉] = β2κ2[z2 − s]

W = βJ0βκ[〈sα〉(〈s
2
α〉 − 1)] = βJ0βκ[m(z − 1)]

X = βJ0βκ[〈sα〉〈s
2
α〉 − 〈sαs

2
β〉]

= βJ0βκ[mz − r]

Y = β2J2βκ〈sαsβ〉[〈s
2
α〉 − 1] = β2J2βκq[z − 1]

Z = β2J2βκ[〈s2
α〉〈sαsβ〉 − 〈s

2
αsβsγ〉] = β2J2βκ[zq − v].

(A.5)

The second equality in each line results from the as-
sumption of replica symmetry. Additional simplifications
are due to the fact that for the S = 1 spin model there are
additional relations, e.g., S2 = S4, etc. Using the previ-
ously defined functions φk(y), see equation (7), the replica
symmetric correlation functions introduced above may be
explicitly written as:

m = 〈sα〉 =

∫
D yφ1(y)

z = 〈s2
α〉 =

∫
D yφ0(y)

q = 〈sαsβ〉 =

∫
D yφ1(y)2

r = 〈sαs
2
β〉 =

∫
D yφ1(y)φ0(y)

s = 〈s2
αs

2
β〉 =

∫
D yφ0(y)2

t = 〈s3
αsβ〉 =

∫
D yφ1(y)2

u = 〈sαsβsγ〉 =

∫
D yφ1(y)3

v = 〈s2
αsβsγ〉 =

∫
D yφ1(y)2φ0(y)

w = 〈sαsβsγsδ〉 =

∫
D yφ1(y)4. (A.6)

A.2 Paramagnetic phase

As is seen from the definitions of the multispin correla-
tion functions (see Eqs. (A.5, A.6)) some of these vanish
identically in the paramagnetic phase. Furthermore some
of the combinations appearing in the calculation of the
eigenvalues, e.g. [W − X] = 0, vanish too. This simpli-
fies significantly the stability analysis in the paramagnetic
phase, because the HessianH and the matrix of the fourth
derivatives become diagonal.
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